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Heat stress is a prime constraint hampering the attainment of cotton yield potential in Pakistan, while
selection of genotypes for high temperature environment using morphological markers often leads to
discrepancies. An experiment was conducted in order to characterize thermo-sensitivity of varying cotton
genotypes using biochemical markers and to determine the biochemical attributes modulated regulations in
biomass accumulation of heat-stressed cotton. The experiment was replicated thrice and laid out in
completely randomized design (CRD) with split arrangement during 2016 at the University of Agriculture
Faisalabad, Pakistan. Treatments consisted of heat stress in main plots, viz. Hy = no heat stress imposition,
and H; = heat imposition for 14 d after emergence at seedling stage, and 15 cultivars of cotton in subplots,
viz. FH-Lalazar, FH-142, FH-114, CIM-598, CIM-599, CIM-602, VH-282, VH-326, VH-341, MNH-886, MNH-888,
MNH-992, 1UB-13, 1UB-212, and IUB-222. Decreases in relative leaf water contents and cell membrane
thermo-stability were lower for genotypes CIM-598, CIM-599, CIM-602, VH-282, VH-326, VH-341, MNH-888,
MNH-992 and IUB-13 compared to other cultivars. Antioxidant enzymes were enhanced under heat stress
compared to the control for cultivars CIM-598, CIM-599, CIM-602, VH-282, VH-326, VH-341, MNH-888, MNH-
992 and IUB-13, while these were decreased in all other cultivars. Heat-mediated decreases in root, shoot
length, fresh and dry weight were lower for cultivars CIM-598, CIM-599, CIM-602, VH-282, VH-326, VH-341,
MNH-888, MNH-992 and IUB-13 compared to other genotypes. Essentially, heat stress deleteriously impacted
all the evaluated parameters; however, distinct cotton genotypes varied remarkably from each other for
antioxidants, membrane stability and biomass accumulation. Moreover, biochemical markers proved to be
potential regulators of biomass accumulation and hence can be used as road map in future cotton
improvement programs. On the basis of the studied response variables, genotypes CIM-598, CIM-599, CIM-
602, VH-282, VH-326, VH-341, MNH-888, MNH-992 and IUB-13 manifested heat tolerance, while FH-114
showed susceptibility to heat stress in cotton.

Key Words: antioxidants, biomass accumulation, cotton, membrane stability, thermotolerance, water relations

Abbreviations: CAT - catalase, CMT - cell membrane thermostability, POD - peroxidase, RDW — root dry weight, RFW
— root fresh weight, RL — root length, RLWC - relative water content, SDW — shoot dry weight, SFW — shoot fresh
weight, SL — shoot length, SOD — superoxide dismutase

2017). Cotton production in Pakistan decreased by 1.5% in
2015-2016 compared to the previous year (Government of
Pakistan 2017).

Cotton is primarily cultivated to get fiber and is a
major cash crop of Pakistan (Igbal et al. 2012). In

INTRODUCTION

Worldwide concern in recent years has developed into an
urgent need to enhance the yield potential of cotton since
its demand is increasing while production is dwindling

continually. Production of cotton was diminished by
20.2% in 2015-16 in all major cotton-producing countries
around the globe, while growing demands for cotton
have added into the import bill of these countries.
Adverse weather, increasing costs of inputs, and poor
policies have further exacerbated the situation and
counterbalanced the demand and supply of cotton (OECD

agriculture, cotton shares 5.1% in value addition and 1%
in GDP. In 2015-16, the area under cotton crop was 2.917
million ha in Pakistan, which was 1.5% less than that of
the previous year (Govt. of Pakistan 2017).

The cotton plant (G. hirsutum spp.) originated in areas
with hot climates; it suffers from extremely high day
temperatures greater than 36 °C (Riaz et al. 2013).
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Temperature reaches up to 48-50 °C during the cotton-
growing season (Shakoor et al. 2017). High temperature
causes loss of 65-70% fruiting points and induces pollen
sterility (Baloch and Lakho 2000). Heat stress markedly
distresses numerous physiological, biochemical and
growth processes in crop plants. According to Reddy et
al. (2004), the suitable daily average temperature for
proper growth of cotton is 27-29 °C. Heat stress, induced
by global warming, is becoming a major threat to crop
productivity, their phenology,
anatomy and physio-biochemical features to tackle heat
stress (Zhang et al. 2008; Shahid et al. 2017). Heat stress is
defined as the magnitude of temperature above the
threshold level where it causes permanent damage to the

and plants change

crop (Talukder et al. 2014). The main impact of heat stress
is surfeit of reactive oxygen species (ROS) and lipid
peroxidation of cellular membranes (Hasanuzzaman et al.
2013). Plants show various agitations in metabolism to
cope with high temperature stress and scavenging of ROS
(Dietz and Pfannschmidt 2011).

Choosing the right cultivar for high-temperature
stress tolerance has been an arduous task universally
(Semenov et al. 2014). High-temperature stress can induce
oxidative stress through disruption of cell membrane
stability and peroxidation of membrane lipids by protein
denaturation (Saleem et al. 2018). The production of
reactive oxygen species in ample volume under high-
temperature stress leads to premature leaf shedding in
cotton that is mainly due to proteolysis of proteins and
degradation of long-chain proteins into simpler ones
(Hemantaranjan et al. 2014). Plants also accumulate
compatible solutes and osmoprotectants as a defensive
mechanism to regain redox balance and
homeostasis. Antioxidants and compatible solutes play a
key role in raising heat tolerance potential and thus
support growth (Anjum et al. 2017).

cellular

Activities of superoxide dismutase, catalase and
ascorbate peroxidase have been enhanced under stress
conditions up to a temperature of 50 °C which decreased
thereafter. However, activities of glutathione reductase
and peroxidase decreased with increase in temperature in
the range of 20-50 °C (Gong et al. 2012). On the other
hand, a boost in the biosynthesis of antioxidant enzyme
activity hampers oxidative damage in the cotton crop
(Gur et al. 2010). Hence, the biosynthesis of antioxidants
has been boosted in tolerant genotypes and impaired in
susceptible genotypes under stress conditions (Daud et al.
2012).

Heat stress is the main cause of declining root and
shoot characteristics (Abdalla and El-Khoshiban 2007).
Traits related to plant growth, such as root, shoot
development, flowering and fiber quality, are mostly
affected by high temperature (Farooq et al. 2015).
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Relative leaf water content is the ratio of actual water
content retained by leaf tissues under ambient conditions
to the maximum water content that can be retained under
excessive availability of water and can make the leaf
tissue turgid to its full extent. Leaf water content is an
important criterion in screening genotypes for heat stress
tolerance (Rahman et al. 2000).

High temperature stress also affects cell membrane
thermostability. Collado et al. (2010) observed higher cell
membrane thermostability in tolerant genotypes than in
susceptible genotypes under stress conditions. Cell
membrane thermostability (CMT) has already been used
as a screening tool for heat tolerance and heat-sensitive
genotypes (Azhar et al. 2009). Moreover, the germination
and seedling stages of the plant life cycle have always
been found to be more sensitive to heat stress than the
adult stages (Lianes et al. 2005).

In general, negative impacts of heat stress are well
established, and a lot of efforts have been made to
ameliorate these impacts through adjustment of sowing
time, foliar spray of nutrients and growth regulators. But
no efforts have been made to look into the genetic
potential of available cultivars to cope with heat stress.
The present study was therefore conducted to arrange
promising cotton genotypes in the order of their thermo-
tolerance.

MATERIALS AND METHODS

Experiment Site

The experiment was conducted in the glass house of the
Department of Plant Breeding and Genetics, Faculty of
Agriculture, University of Agriculture Faisalabad,
Pakistan.

Plant Material

Genotypes FH-Lalazar, FH-142 and FH-114 were obtained
from the Ayub Agriculture Research Institute (AARI)
Faisalabad, Pakistan. Seeds of varieties CIM-598, CIM-599
and CIM-602 were procured from the Central Cotton
Research Institute (CCRI), Multan, Pakistan. Seed
material of cultivars VH-282, VH-326 and VH-341 was
obtained from the Cotton Research Station, Vehari,
Pakistan. Genotypes MNH-886, MNH-888 and MNH-992
were obtained from the Cotton Research Station Multan,
Pakistan. Genotypes IUB-13, IUB-212 and IUB-222 were
obtained from The Islamia University of Bahawalpur,
Pakistan.

Treatments and Agronomic Practices

The experiment consisted of heat stress [Ho= No heat
stress (pots placed in ambient environment) and Hi= Heat
stress (pots placed in glass house)] and cotton genotypes
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(FH-Lalazar, FH-142, FH-114, CIM-598, CIM-599, CIM-
602, VH-282, VH-326, VH-341, MNH-886, MNH-88S,
MNH-992, 1UB-13, IUB-212, and IUB-222). Sowing was
done in pots on 1%t April 2016. Each pot had 8 kg clean,
air-dried, sieved soil and the recommended fertilizer dose
(N: P: K at the rate of 200: 115: 95 kg ha') was mixed
thoroughly in the soil. In each pot, three seeds were
dibbled and then only one plant was maintained. All
cultural practices, except treatments, were kept normal
and uniform for the whole experiment. Plants were
uprooted 14 d after germination to record observations.

Imposition of Heat Stress

After complete germination of cotton plants, pots were
placed in a glass house for 14 d. During imposition of
heat stress, temperature was recorded in the morning, at
noon and in the evening with the help of a digital
temperature and humidity probe (Digital Multimeter-
50302). Mean daily temperature in control and heat-
stressed main plots are shown graphically in Figure 1.
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Fig. 1. Mean daily temperature during

experimentation on cotton genotypes.

Experimental Design

A completely randomized design (CRD) with split
treatment structure having three replications was used to
conduct the experiment. The data collected were analyzed
statistically (P < 0.05) using Fisher’s analysis of variance
(Steel et al. 1997) and treatments means were compared
by using Tukey’s Honestly Significant Difference (Tukey’s
HSD) test (Gomez and Gomez 1984). Correlation analyses
were performed among different recorded parameters.

Observations Recorded

Root and shoot lengths (in centimeters) were measured
with the help of a ruler at the time of uprooting. The root
length was measured from the point where the root and
the shoot join to the end of the roots, while shoot length
was measured from the root shoot joint to the top of the
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shoot. The root and shoot fresh weights were determined
after separating the seedlings from the root and shoot
joints, while the dry weights were recorded after drying
the samples in an oven at 70 °C till the constant weight
was achieved.

Relative leaf (RLWC) were
determined with some changes in methodology described
by Weatherley (1950), as expressed in the formula

water contents

RLWC% = v — ) 100
= (TW —DW)
where FW is fresh weight, DW is dry weight, and TW is
turgid weight.

Relative cell injury (RCI) and cell and membrane
thermostability (CMT) were determined according to the
method of Sullivan (1972), as follows

T1
l — —

RCI% =1 ——(—g—) X 100
1-(g)

where Ti is the initial electrical conductivity (EC) value of
the heat-treated vial, T2 is the final EC value of the heat-
treated vial, Ci is the initial EC value of the control vial,
and C2 is the final EC value of the control vial. CMT was
calculated by deducting RCI (%) from 100.

Superoxide dismutase activity was measured as
the amount of enzyme that inhibited photochemical
reduction of nitro blue tetrazolium (NBT) and enzyme-
linked immunosorbent assay (ELISA) plate was used to
note the absorbance at 560 nm (Giannopolitis and Ries
1977). Peroxidase activity was recorded as the amount of
enzyme required for guaiacol oxidation and absorbance
was measured at 470 nm using ELISA plate (Liu et al.
2009). Activity of catalase was determined as the amount
of H202 consumed by the enzyme and converted to H.O
and Oz, and recorded the absorbance at 240 nm
wavelengths on ELISA plate (Liu et al. 2009).

RESULTS AND DISCUSSION

Generally, heat stress produced negative impacts on
biomass accumulation, relations, membrane
integrity and antioxidant activities. However, varying
responses of genotypes were observed under heat-
imposed and ambient environment. Thus, a significant
heat x genotypes effect was recorded for all attributes
(Tables 1 and 2). Negative implications of heat were a
consequence of heat-induced transformations in water
relations, biomass accumulation and metabolic processes
of cotton.

water
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Table 1. Analysis of variance for effect of heat stress on young seedlings of cotton genotypes.

Sov DF Parameters
RL SL RFW RDW SFwW SDW
Replications 2 0.5795 0.070 0.00009 0.00001 0.00439 0.00001
Heat (H) 1 60.1557** 660.319** 0.03823** 0.0007** 0.41534** 0.02770**
Error 1 2 0.1436 0.656 0.00005 0.0000005 0.00223 0.00001
Varieties (V) 14 7.4255** 44.931** 0.00285** 0.0001** 0.02129** 0.00027**
HxV 14 0.1113** 6.429** 0.00038** 0.000004** 0.00177** 0.00002**
Error 2 56 0.0282 0.544 0.00006 0.000001 0.00003 0.00001

SOV, source of variation; DF, degree of freedom; RL, root length (cm); SL, shoot length (cm); RFW, root fresh weight (g); RDW, root
dry weight (g); SFW, shoot fresh weight (g); SDW, shoot dry weight (g)

Highly significant at P < 0.01; "Significant at P < 0.05

Table 2. Analysis of variance for effect of heat stress on biochemical characteristics of cotton genotypes.

Sov DF Parameters

RLWC CMT SOD POD CAT
Replications 2 7.2 1.9 3.39 0.41 1.3
Heat (H) 1 29440.9** 31158.1** 196.01* 1619.09** 5889.8*
Error 1 2 12.6 5.2 6.58 7.69 95.6
Varieties (V) 14 78.1** 145.7** 1249.35* 2014.03* 16251.8**
HxV 14 22.4* 11.1** 535.81* 1053.06** 7650.0**
Error 2 56 37 3.2 2.05 3.30 27.3

SOV, source of variation; DF, degree of freedom; RLWC, relative leaf water contents (%); CMT, cell membrane thermostability; SOD,
superoxide dismutase (U per mg protein); POD, peroxidase (U per mg protein); CAT, catalase (U per mg protein)

Highly significant at P < 0.01; Significant at P < 0.05

In terms of biomass-accumulating attributes, more
shoot length, root fresh weight and shoot dry weights
were manifested by genotypes MNH-888 and MNH-992
under no heat and heat-imposed conditions, while the
highest shoot fresh weight was produced by genotypes
MNH-888 and MNH-992 under no heat. On the other
hand, under heat-stress environment, genotypes CIM-598
and CIM-602 manifested high shoot fresh weight.
Although level of significance varied, more root length
and root dry weight were observed in genotypes CIM-
598, CIM-599 and CIM-602 under heat-imposed as well as
in ambient environment. The lowest heat-triggered
reduction in shoot fresh and dry weights was observed in
genotypes CIM-599 and CIM-598. The least decline in root
and shoot lengths under heat-imposed conditions (Hz)
versus ambient conditions (Ho) was recorded for the
genotype MNH-992, while the lowest decline in shoot
fresh and dry weights was recorded for CIM-602 under
heat stress (Hi) versus the control. The highest
diminishment in all biomass-accumulating attributes

122

under heat versus control was observed for genotype FH-
114 (Fig. 2).

Genotypes CIM-598, CIM-602, MNH-888 and MNH-
992 showed the least decrease of 42-43% in relative leaf
water contents (RLWC) under heat versus control,
whereas the highest heat-mediated diminishment in
RLWC was observed for FH-114 (60%) (Fig. 3). The
genotype VH-341 exhibited more promising CMT (79.87)
under ambient environment (Ho), yet it was statistically
similar to the other cultivars. On the other hand, under
stressed conditions, the highest CMT was observed for
IUB-13. Genotype IUB-13 was also statistically similar to
VH-326, 282, 341, CIM-598, 599, 602, MNH-888 and MNH
-992 for CMT. The maximum decline in CMT in stressed
environment versus control was shown by FH-114 (63%)
while the minimum was shown by VH-326 (44%), closely
followed by IUB-13 (42%) (Fig. 3).

Activities of antioxidants such as superoxide
dismutase (SOD), peroxidase (POD) and catalase (CAT)
declined in genotypes FH-Lalazar, 114, 142, IUB-212, 222
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) under heat versus control was
observed for genotypes VH-341 (19%),
VH-326, MNH-888 and IUB-13 (18%)

(Fig. 3).
DISCUSSION

Heat stress generally had negative
associations with root/shoot traits and
enzymatic antioxidant activities of
cotton. These negative implications
might have arisen due to motivated
ROS production and oxidation of
cellular components such as lipids,
proteins, DNA and antioxidants. High
temperature either caused a decline in
antioxidant biosynthesis or on some
occasions, genotype-specific response
was also marked.
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In this trial, heat stress caused a
significant reducing effect on growth
parameters containing root and shoot
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fresh biomass. Our results are similar
to those of Cheng et al. (2009) who
recorded a significant drop in shoot
fresh weight due to high temperature
in wheat and sugarcane. Abo Hamad
(2007) reported that shoot and root
growth were visibly inhibited by heat
treatment in cotton. However,
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Fig. 2. Effect of heat stress on

and MNH-886. Among these, FH-114 manifested more
heat-mediated inhibition in SOD, POD and CAT activities
(55%, 57% and 56%, respectively) under heat stress
condition versus control. However, enhancement in
enzymatic activities was recorded for all other cultivars
under heat stress versus control (Fig. 3). In terms of SOD
activity, CIM-602 and VH-326 showed enhancement of
22% and 19%, respectively, under heat stress versus non-
heat stressed environments (Fig. 3).

The cultivars VH-282 and VH-341 exhibited
increment in POD activity than the cultivars CIM-598,
599, 602, VH-326, MNH-888, 992 and IUB-13. About 19%
and 18% boost in POD activity was observed for VH-282
and VH-341, respectively. Under high temperature,
maximum decline (65%) in POD activity was observed for

FH-114. Comparatively more increase in CAT activity
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seedling growth of cotton genotypes.

significantly = under  heat  stress
compared to ambient conditions
(Kadir and Weigh 2007).

studies, declining
responses of shoot lengths to water
stress
(Pennisetum glaucum) and cotton (Gossypium hirsutum) but
genotypes
conditions (Igbal et al. 2011). The root is an essential
organ for the study of water relations in plants. Root
development in cotton was genetically controlled (Riaz et
al. 2013), but change in appearance of root traits due to
environmental impacts had also been reported (Cooper et
al. 2009). Furthermore, a strong positive and remarkable
association of RL, SL, RFW, RDW, SEFW and SDW with
antioxidants resulted in the oxidative stress-mediated
decrease in biomass accumulation (Table 3).

Naji and Devaraj (2011)
peroxidase isozyme activity under heat and salt stress.
Peroxidase antioxidant enzymes are heme-containing
oxidoreductases that take part in a number of metabolic
processes, such as cell elongation regulation (Andrews et
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stress

al. 2002), cell wall cross linking, lignification and
oxidation of phenolic compounds.

Relative leaf water content (RLWC) is an important
indicator of water status. As shown by cultivar 84-S with
its higher RLWC than that of cultivar M-503, tolerant
varieties did better in maintaining RLWC under stress
compared to susceptible genotypes (Cia et al. 2012). Heat-
induced diminishment in RLWC and a concomitant
decrease in dry matter accumulation was also confirmed
from a strong association of RLWC with SOD, POD and
CAT under heat stress and ambient conditions (Table 3).

Heat stress/high temperature reduced cell membrane
thermostability (CMT), leading to enhanced lipid

124
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peroxidation and protein
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1R . . .

f considered as an indirect

rapid measurement

technique for heat stress
tolerance in various crops
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from leaf pieces (Wahid et
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AN W are crucial for cells to show

growth, while CMT is a
of heat
tolerance. Decline in CMT
might have  promoted
cellular death that
ultimately lead to fewer
bolls. Our results are similar
to those of Ghaffari et al.
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physiological processes.

Moreover, a strong positive
association of CMT with
antioxidants established the
role
sustaining membrane
stability (Table 3).

Our results with regard

of antioxidants in

to cell membrane
thermostability are also in
line with the findings of
Yildirim et al. (2009) who
reported that cell
membrane thermostability
of genotypes
decreased and the highest decline was observed in
susceptible genotypes. Increment in the activity of the
antioxidant defense system under heat stress indicates
the ability of the system to tolerate higher temperature. It
is well documented that heat stress results in increased
production of enzymatic antioxidants in heat-tolerant
genotypes to diminish harmful consequences of reactive
oxygen species (Igbal et al. 2015). Some important
mechanisms that may induce tolerance against high
temperature environment are biosynthesis
embryogenesis abundant proteins, ion adjustments,
antioxidant scavenging system and transcriptional factors
to counterbalance reactive oxygen species (Wang et al.
2014). A strong positive association of SOD, POD and

wheat

of late
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Table 3. Correlation matrix showing strength of association among recorded attributes of cotton genotypes under

no heat (Ho) and heat stress (Hz).

Parame- Treat- RL SL RFW RDW SFW SDW RLWC CMT SOD POD CAT
ter ment
RL Ho 1.00
H, 1.00
SL Ho 0.74*  1.00
H; 0.80**  1.00
RFW Ho 0.75** 0.81*  1.00
H; 0.91* 0.79*  1.00
RDW Ho 0.87** 0.65* 0.65**  1.00
H; 0.93* 0.71* 0.90*  1.00
SFW Ho 0.82**  0.89* 0.86* 0.66*  1.00
Hy 0.94*  0.80* 0.91* 0.93*  1.00
SDW Ho 0.72*  0.74* 0.82* 0.68* 0.89*  1.00
Hy 0.91* 0.85* 0.96* 0.89* 0.95*  1.00
RLWC Ho 0.15% 0.02% 040 0.0 023% 023%  1.00
Hy 0.88**  0.69** 0.91** 0.84** 0.91*  0.90** 1.00
CMT Ho 0.74*  0.59* 0.75* 0.75* 0.76** 0.90* 030"  1.00
H; 0.78*  0.62* 0.91* 0.84* 078 0.83*  0.86** 1.00
SOD Ho 0.69**  0.61* 0.72* 0.74* 0.66* 0.77* 006" 0.87* 1.00
H; 0.86** 0.71** 0.97** 0.92** 0.89** 0.93** 0.89** 0.94*  1.00
POD Ho 0.70*~  0.60*  0.59* 0.79* 0.70* 0.76* 0.31"° 078 062 1.00
Hy 0.84**  0.70*  0.94* 0.91** 0.91* 0.92*  0.89** 0.91* 098"  1.00
CAT Ho 0.74*  0.67** 0.82* 0.76** 0.76** 0.85* 043" 085 078 0.84* 1.00
Hy 0.84*  0.71** 0.97** 0.90* 0.90* 0.93*  0.90*  0.94* 0.99** 0.99* 1.00

Highly significant; NS Non-significant; n (number of pairs of observations) = 90
RL, root length; SL, shoot length; RFW, root fresh weight; RDW, root dry weight; SFW, shoot fresh weight; SDW, shoot dry
weight; RLWC, relative leaf water contents; CMT, cell membrane thermostability; SOD, superoxide dismutase; POD, peroxidase;

CAT, catalase

CAT with RL, SL, RFW, RDW, SEW and SDW resulted in
the biomass-mediated improvements in the defense
system of antioxidants (Table 3).

Increment in SOD activity in tolerant cultivars might
be due to increased production of superoxide radical
(O2") under high temperature environment as superoxide
radical acts as substrate for SOD (Jiang and Huang 2001).
Heat-susceptible cultivars showed decrement in SOD
activity under high temperature that can be ascribed to
lower efficacy of the scavenging mechanism of these
cultivars. Heat-tolerant cultivars recorded increment
while susceptible cultivars represented decline in SOD
activity under high temperature (Naderi et al. 2014).
Almeselmani et al. (2006) recorded statistically significant
increments in SOD activity in drought-tolerant Phaseolus
acutifolius and heat-tolerant wheat cultivars. Detoxification
of hydrogen peroxide (H:02) to H2O and O: forms in
plants is facilitated both by POD and CAT. Higher H20:
production under heat stress might have resulted in
increment of POD and CAT activity as a defensive
mechanism against stress in tolerant cultivars. Our
results are in agreement with earlier findings of Igbal et
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al. (2015) who observed up-marking in POD and CAT
activity under water stress environment in drought-
These results are also
comparable to those of Khaliq et al. (2015) who observed
increment in POD and CAT activity in salt-stress

tolerant cultivars of wheat.

environment in tolerant cultivars of wheat. However,
decrement or no change in CAT activity was recorded for
stress-tolerant genotypes by Wang et al. (2014). Kumar et
al. (2012) documented increase in SOD, POD and CAT
activity under heat-stressed conditions in heat-tolerant
genotypes against the decline for heat-susceptible
cultivars of crop plants.

CONCLUSION

Heat-induced change in dismutase,
peroxidase, catalase, relative leaf water contents and cell
membrane thermostability is a good indicator of change
in dry-matter accumulating traits. Heat stress adversely
affected root and shoot attributes of all genotypes.
Varieties CIM-598, CIM-599, CIM-602, VH-282, VH-326,
VH-341, MNH-888, MNH-992 IUB-13  were

superoxide

and

125



Screening Cotton Genotypes for Heat Tolerance

moderately heat-tolerant; FH-Lalazar, FH-142, MNH-886,
IUB-212 and IUB-222 showed medium susceptibility
while FH-114 was the most susceptible to terminal heat
stress.
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